Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances (2024)

An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances. The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision. Specifically, based on the adaptive backstepping framework, virtual control laws and Lyapunov functions are designed for each subsystem. Three direction interference observers are designed to track the time-varying boundary disturbance. On this basis, the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone. In addition, the stability of the closed-loop system is proven by Lyapunov stability theory. All the system states are bounded, and the vibration offset of the riser converges to a small area of the initial position. Finally, four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.

    Keywords:
  • adaptive backstepping control,
  • disturbance observer,
  • flexible marine riser,
  • input dead zone,
  • vibration control
Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances (1)
  1. [1]

    Abhyankar, N.S., Hall II, E.K. and Hanagud, S.V., 1993. Chaotic vibrations of beams: numerical solution of partial differential equations, Journal of Applied Mechanics, 60(1), 167–174. doi: 10.1115/1.2900741

  2. [2]

    Chen, S.Y., Zhao, Z.J., Zhu, D.C., Zhang, C.L. and Li, H.X., 2022. Adaptive robust control for a spatial flexible timoshenko manipulator subject to input dead-zone, IEEE Transactions on Systems,Man,and Cybernetics:Systems, 52(3), 1395–1404. doi: 10.1109/TSMC.2020.3020326

  3. [3]

    Do, K.D., 2018a. Stabilisation of large motions of Euler−Bernoulli beams by boundary controls, International Journal of Systems Science, 49(4), 736–754. doi: 10.1080/00207721.2018.1425506

  4. [4]

    Do, K.D., 2018b. Boundary control of transverse motion of flexible marine risers under stochastic loads, Ocean Engineering, 155, 156–172. doi: 10.1016/j.oceaneng.2018.02.031

  5. [5]

    Edmans, B.D., Pham, D.C., Zhang, Z.Q., Guo, T.F., Sridhar, N. and Stewart, G., 2019. An effective multiscale methodology for the analysis of marine flexible risers, Journal of Marine Science and Engineering, 7(10), 340. doi: 10.3390/jmse7100340

  6. [6]

    Ejegwa, P.A., Wen, S.P., Feng, Y.M., Zhang, W. and Tang, N., 2022. Novel pythagorean fuzzy correlation measures via pythagorean fuzzy deviation, variance, and covariance with applications to pattern recognition and career placement, IEEE Transactions on Fuzzy Systems, 30(6), 1660–1668. doi: 10.1109/TFUZZ.2021.3063794

  7. [7]

    Ge, S.S., He, W., How, B.V.E. and Choo, Y.S., 2010. Boundary control of a coupled nonlinear flexible marine riser, IEEE Transactions on Control Systems Technology, 18(5), 1080–1091. doi: 10.1109/TCST.2009.2033574

  8. [8]

    He, W., Ge, S.S., How, B.V.E., Choo, Y.S. and Hong, K.S., 2011. Robust adaptive boundary control of a flexible marine riser with vessel dynamics, Automatica, 47(4), 722–732. doi: 10.1016/j.automatica.2011.01.064

  9. [9]

    He, X.Y., He, W. and Sun, C.Y., 2017. Robust adaptive vibration control for an uncertain flexible Timoshenko robotic manipulator with input and output constraints, International Journal of Systems Science, 48(13), 2860–2870. doi: 10.1080/00207721.2017.1360963

  10. [10]

    He, W., He, X.Y. and Ge, S.S., 2015. Modeling and vibration control of a coupled vessel-mooring-riser system, IEEE/ASME Transactions on Mechatronics, 20(6), 2832–2840. doi: 10.1109/TMECH.2015.2396034

  11. [11]

    He, W., He, X.Y., Zou, M.F. and Li, H.Y., 2019. PDE model-based boundary control design for a flexible robotic manipulator with input backlash, IEEE Transactions on Control Systems Technology, 27(2), 790–797. doi: 10.1109/TCST.2017.2780055

  12. [12]

    He, W., Meng, T.T., Huang, D.Q. and Li, X.F., 2018. Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint, IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1539–1549. doi: 10.1109/TNNLS.2017.2673865

  13. [13]

    Li, S.L., He, P., Nguang, S.K. and Lin, X.H., 2020. Barrier function-based adaptive neuro network sliding mode vibration control for flexible double-clamped beams with input saturation, IEEE Access, 8, 125887–125898. doi: 10.1109/ACCESS.2020.3008155

  14. [14]

    Liao, C.L., Tu, D., Feng, Y.M., Zhang, W., Wang, Z.T. and Onasanya, B.O., 2022. A sandwich control system with dual stochastic impulses, IEEE/CAA Journal of Automatica Sinica, 9(4), 741–744. doi: 10.1109/JAS.2022.105482

  15. [15]

    Liao, M.L., Wang, G.W., Gao, Z.Y., Zhao, Y.P. and Li, R.F., 2020. Mathematical modelling and dynamic analysis of an offshore drilling riser, Shock and Vibration, 2020, 8834011.

  16. [16]

    Liu, Y., Chen, X.B., Mei, Y.F. and Wu, Y.L., 2022a. Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator, Science China Information Sciences, 65(3), 139203.

  17. [17]

    Liu, Y., Chen, X.B., Wu, Y.L., Cai, H. and Yokoi, H., 2022b. Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint, IEEE Transactions on Neural Networks and Learning Systems, 33(11), 6226–6234.

  18. [18]

    Liu, Y., Fu, Y., He, W. and Hui, Q., 2019. Modeling and observer-based vibration control of a flexible spacecraft with external disturbances, IEEE Transactions on Industrial Electronics, 66(11), 8648–8658.

  19. [19]

    Liu, Y. and Guo, F., 2018. Output feedback boundary control of a flexible marine riser system, Journal of Vibration and Control, 24(16), 3617–3630. doi: 10.1177/1077546317708516

  20. [20]

    Liu, Y., Mei, Y.F., Cai, H., He, C.R., Liu, T. and Hu, G.Q., 2022c. Asymmetric input–output constraint control of a flexible variable-length rotary crane arm, IEEE Transactions on Cybernetics, 52(10), 10582–10591.

  21. [21]

    Liu, Y., Wang, Y.N., Feng, Y.H. and Wu, Y.L., 2022d. Neural network-based adaptive boundary control of a flexible riser with input deadzone and output constraint, IEEE Transactions on Cybernetics, 52(12), 13120–13128. doi: 10.1109/TCYB.2021.3102160

  22. [22]

    Liu, Y., Wang, Y.N., Mei, Y.F. and Wu, Y.L., 2022e. Boundary iterative learning control of a flexible riser with input saturation and output constraint, IEEE Transactions on Systems,Man,and Cybernetics:Systems, 52(11), 7044–7052. doi: 10.1109/TSMC.2022.3149283

  23. [23]

    Liu, Y., Zhan, W.K., Xing, M.L., Wu, Y.L., Xu, R.F. and Wu, X.S., 2022f. Boundary control of a rotating and length-varying flexible robotic manipulator system, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(1), 377–386.

  24. [24]

    Ma, G., Tan, Z.F., Liu, Y.M., Zhao, Z.J. and Zou, T., 2022a. Adaptive robust barrier-based control of a 3D flexible riser system subject to boundary displacement constraints, International Journal of Robust and Nonlinear Control, 32(5), 3062–3077. doi: 10.1002/rnc.5693

  25. [25]

    Ma, J.L., Wang, J.Q., Fei, S.M. and Liu, Y.J., 2022b. Global fixed-time control for nonlinear systems with unknown control coefficients and dead-zone input, IEEE Transactions on Circuits and Systems II:Express Briefs, 69(2), 594–598.

  26. [26]

    Szczesiak, M. and Basturk, H.I., 2022. Adaptive boundary control for wave PDE on a domain with moving boundary and with unknown system parameters in the boundary dynamics, Automatica, 145, 110526. doi: 10.1016/j.automatica.2022.110526

  27. [27]

    Wan, M., Huang, S.S., Wang, G.R. and Zhang, Q., 2022a. Observer-based adaptive neural network control for stabilized platform in rotary steerable system with unknown input dead-zone, Transactions of the Institute of Measurement and Control, 44(11), 2152–2165. doi: 10.1177/01423312221075481

  28. [28]

    Wan, M., Yin, Y.X., Liu, J. and Guo, X.Q., 2021. Active boundary control of vibrating marine riser with constrained input in three-dimensional space, Nonlinear Dynamics, 106(3), 2329–2345. doi: 10.1007/s11071-021-06887-1

  29. [29]

    Wan, M., Zhou, L., Zhang, Q. and Yin, Y.X., 2022b. Adaptive fuzzy backstepping control of flexible marine riser with uncertain parameters and input saturation constraint, Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering, 236(8), 1477–1490. doi: 10.1177/09596518221100087

  30. [30]

    Wang, H.D., Zhai, Y.X., Shah, U.H., Karkoub, M. and Li, M., 2023. Adaptive fuzzy control of underwater vehicle manipulator system with dead-zone band input nonlinearities via fuzzy performance and disturbance observers, Ocean Engineering, 277, 114194. doi: 10.1016/j.oceaneng.2023.114194

  31. [31]

    Wei, J.H., Liu, Y.J., Chen, H. and Liu, L., 2023. Fuzzy adaptive control for vehicular platoons with constraints and unknown dead-zone input, IEEE Transactions on Intelligent Transportation Systems, 24(4), 4403–4412. doi: 10.1109/tit*.2023.3234910

  32. [32]

    Yu, C.Y., Lou, X.Y., Ma, Y.F., Ye, Q. and Zhang, J.Q., 2022. Adaptive neural network based boundary control of a flexible marine riser system with output constraints, Frontiers of Information Technology & Electronic Engineering, 23(8), 1229–1238.

  33. [33]

    Zhang, S., He, X.Y. and Yang, C., 2017. Vibration control of a flexible marine riser with joint angle constraint, Nonlinear Dynamics, 87(1), 617–632. doi: 10.1007/s11071-016-3064-y

  34. [34]

    Zhang, S., Tang, L. and Liu, Y.J., 2022. Output feedback control of a flexible marine riser with the top tension constraint, Systems & Control Letters, 163, 105208.

  35. [35]

    Zhao, Z.J., Ahn, C.K. and Li, H.X., 2020a. Dead zone compensation and adaptive vibration control of uncertain spatial flexible riser systems, IEEE/ASME Transactions on Mechatronics, 25(3), 1398–1408. doi: 10.1109/TMECH.2020.2975567

  36. [36]

    Zhao, Z.J., Ahn, C.K. and Wen, G.L., 2019a. Cooperative disturbance rejection control of vibrating flexible riser systems, Nonlinear Dynamics, 98(3), 1603–1613. doi: 10.1007/s11071-019-05139-7

  37. [37]

    Zhao, Z.J., He, X.Y. and Wen, G.L., 2019b. Boundary robust adaptive anti-saturation control of vibrating flexible riser systems, Ocean Engineering, 179, 298–306. doi: 10.1016/j.oceaneng.2019.01.020

  38. [38]

    Zhao, Z.J., Lin, S.M., Zhu, D.C. and Wen, G.L., 2020b. Vibration control of a riser-vessel system subject to input backlash and extraneous disturbances, IEEE Transactions on Circuits and Systems II:Express Briefs, 67(3), 516–520.

  39. [39]

    Zhao, Z.J., Liu, Y.M., Ma, G., Hong, K.S. and Li, H.X., 2023. Adaptive fuzzy fault-tolerant control for a riser-vessel system with unknown backlash, IEEE Transactions on Systems,Man,and Cybernetics:Systems, 53(10), 6598–6607. doi: 10.1109/TSMC.2023.3285653

Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances (2)
  1. [1]

    Wan-hai XU,Ye-xuan MA.A Review on Vibration Control of Multiple Cylinders Subjected to Flow-Induced Vibrations.China Ocean Engineering,2024,38(2):183-197.doi:10.1007/s13344-024-0016-z

  2. [2]

    Shuang-yi XIE,Cheng-lin ZHANG,Jiao HE,Jing JIANG,Jian GAO.Dynamic Response Analysis and Vibration Control for A Fixed-Bottom Offshore Wind Turbine Subjected to Multiple External Excitations.China Ocean Engineering,2022,36(1):50-64.doi:10.1007/s13344-022-0004-0

  3. [3]

    HUSSAN Mosaruf,SHARMIN Faria,KIM Dookie.Multiple Tuned Mass Damper Based Vibration Mitigation of Offshore Wind Turbine Considering Soil–Structure Interaction.China Ocean Engineering,2017,31(4):476-486.doi:10.1007/s13344-017-0054-x

  4. [4]

    Fang DENG,Long-jin WANG,Dong-mei JIAO.Adaptive Observer Based Backstepping Controller Design for Dynamic Ship Positioning.China Ocean Engineering,2017,31(5):639-645.doi:10.1007/s13344-017-0073-7

  5. [5]

    .Vibration Characteristics of An Offshore Platform and Its Vibration Control.China Ocean Engineering,2002,(4):-.

  6. [6]

    Wan-hai XU,Qi-cheng WANG,Wen-qi QIN,Zun-feng DU.Passive Control of Flow-Induced Vibration (FIV) by Helical Strakes for Two Staggered Flexible Cylinders.China Ocean Engineering,2021,35(4):475-489.doi:10.1007/s13344-021-0044-x

  7. [7]

    Qin ZHANG,Xing-yue WANG,Zheng-zhong ZHANG,Fu-na ZHOU,Xiong HU.Wave Heave Compensation Based on An Optimized Backstepping Control Method.China Ocean Engineering,2022,36(6):959-968.doi:10.1007/s13344-022-0084-x

  8. [8]

    Ming-zhu LI,Tian-zhen WANG,Fu-na ZHOU,Ming SHI.An Adaptive Single Neural Control for Variable Step-Size P&O MPPT of Marine Current Turbine System.China Ocean Engineering,2021,35(5):750-758.doi:10.1007/s13344-021-0066-4

  9. [9]

    .Adaptive Neural Network Control with Control Allocation for A Manned Submersible in Deep Sea.China Ocean Engineering,2007,(1):-.

  10. [10]

    .Vibration Control of Multi-Tuned Mass Dampers for An Offshore Oil Platform.China Ocean Engineering,2002,(3):-.

  11. [11]

    .Optimal Active Control of Wave-Induced Vibration for Offshore Platforms.China Ocean Engineering,2001,(1):-.

  12. [12]

    崔洪宇,赵德有,周平.Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network.China Ocean Engineering,2009,(2):185-198.

  13. [13]

    .Effect of Sample Disturbance on Unconfined Compression Strength of Natural Marine Clays.China Ocean Engineering,2003,(3):-.

  14. [14]

    .Long-Term Effect of TMD on Vibration Control of An MDOF Offshore Fixed Platform.China Ocean Engineering,2003,(4):-.

  15. [15]

    .Semi-Active Control of Wave-Induced Vibration for Offshore Platforms by Use of MR Damper.China Ocean Engineering,2002,(1):-.

  16. [16]

    HOSSEINLOU Farhad.Structural Model Updating of Jacket Platform by Control Theory Using Vibration Measurement Approach.China Ocean Engineering,2021,35(1):96-106.doi:10.1007/s13344-021-0009-0

  17. [17]

    Farhad Hosseinlou.Structural Model updating of Jacket platforms by Control Theory using Vibration Measurement Approach.China Ocean Engineering,2020,():-.

  18. [18]

    Tie REN,Meng-meng ZHANG,Shi-xiao FU,Lei-jian SONG.Hydrodynamics of A Flexible Riser Undergoing the Vortex-Induced Vibration at High Reynolds Number.China Ocean Engineering,2018,32(5):570-581.doi:10.1007/s13344-018-0059-0

  19. [19]

    Hong-jun ZHU,Hong-lei ZHAO,Yue GAO.Experimental Investigation of Vibration Response of A Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow.China Ocean Engineering,2018,32(6):633-645.doi:10.1007/s13344-018-0065-2

  20. [20]

    Hong-jun ZHU,Peng-zhi LIN.Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow.China Ocean Engineering,2018,32(3):301-311.doi:10.1007/s13344-018-0031-z

Vibration Control of A Flexible Marine Riser System Subject to Input Dead Zone and Extraneous Disturbances (2024)

References

Top Articles
Latest Posts
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 6124

Rating: 5 / 5 (80 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.